Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 36, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214768

RESUMO

N-methyl-D-aspartate receptors (NMDARs) play a critical role in normal brain function, and variants in genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. We have used whole-cell patch-clamp electrophysiology, fluorescence microscopy and in-silico modeling to explore the functional consequences of disease-associated nonsense and frame-shift variants resulting in the truncation of GluN2A or GluN2B C-terminal domain (CTD). This study characterizes variant NMDARs and shows their reduced surface expression and synaptic localization, altered agonist affinity, increased desensitization, and reduced probability of channel opening. We also show that naturally occurring and synthetic steroids pregnenolone sulfate and epipregnanolone butanoic acid, respectively, enhance NMDAR function in a way that is dependent on the length of the truncated CTD and, further, is steroid-specific, GluN2A/B subunit-specific, and GluN1 splice variant-specific. Adding to the previously described effects of disease-associated NMDAR variants on the receptor biogenesis and function, our results improve the understanding of the molecular consequences of NMDAR CTD truncations and provide an opportunity for the development of new therapeutic neurosteroid-based ligands.


Assuntos
Neuroesteroides , Receptores de N-Metil-D-Aspartato , Humanos , Fenômenos Eletrofisiológicos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Brain Res ; 1826: 148739, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157956

RESUMO

Adar2-/- mice are a widely used model for studying the physiological consequences of reduced RNA editing. These mice are viable only when the Q/R editing site of the Gria2 subunit of the AMPA receptor is constitutively mutated to the codon for arginine, and Gria2R/R mice often serve as the sole control for Adar2-/- mice. Our study aimed to investigate whether ADAR2 inactivity and the Gria2R/R phenotype affect the rhythmicity of the circadian clock gene pattern and the expression of Gria1 and Gria2 subunits in the suprachiasmatic nucleus (SCN), hippocampus, parietal cortex and liver. Our data show that Gria2R/R mice completely lost circadian rhythmicity in the hippocampus compared to Adar2-/- mice. Compared to C57BL/6J mice, the expression profiles in the hippocampus and parietal cortex of Gria2R/R mice differ to the same extent as in Adar2-/-. No alterations were detected in the circadian profiles in the livers. These data suggest that the natural gradual postnatal increase in the editing of the Q/R site of the Gria2 subunit may be important for the development of circadian clockwork in some brain structures, and the use of Gria2R/R mice as the only control to Adar2-/- mice in the experiments dependent on the hippocampus and parietal cortex should therefore be considered.


Assuntos
Encéfalo , Ritmo Circadiano , Animais , Camundongos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Encéfalo/metabolismo , Expressão Gênica , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático/metabolismo
3.
J Pers Med ; 11(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34945722

RESUMO

The heritable component of schizophrenia (SCH) as a polygenic trait is represented by numerous variants from a heterogeneous group of genes each contributing a relatively small effect. Various SNPs have already been found and analyzed in genes encoding the NMDAR subunits. However, less is known about genetic variations of genes encoding the AMPA and kainate receptor subunits. We analyzed sixteen iGluR genes in full length to determine the sequence variability of iGluR genes. Our aim was to describe the rate of genetic variability, its distribution, and the co-occurrence of variants and to identify new candidate risk variants or haplotypes. The cumulative effect of genetic risk was then estimated using a simple scoring model. GRIN2A-B, GRIN3A-B, and GRIK4 genes showed significantly increased genetic variation in SCH patients. The fixation index statistic revealed eight intronic haplotypes and an additional four intronic SNPs within the sequences of iGluR genes associated with SCH (p < 0.05). The haplotypes were used in the proposed simple scoring model and moreover as a test for genetic predisposition to schizophrenia. The positive likelihood ratio for the scoring model test reached 7.11. We also observed 41 protein-altering variants (38 missense variants, four frameshifts, and one nonsense variant) that were not significantly associated with SCH. Our data suggest that some intronic regulatory regions of iGluR genes and their common variability are among the components from which the genetic predisposition to SCH is composed.

4.
Mol Neurobiol ; 58(1): 439-449, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32964314

RESUMO

The mammalian circadian system consists of a major circadian pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks in the body, including brain structures. The SCN depends on glutamatergic neurotransmission for transmitting signals from the retina, and it exhibits spontaneous 24-h rhythmicity in neural activity. The aim of this work was to evaluate the degree and circadian rhythmicity of AMPA receptor GluA2 subunit R/G editing and alternative flip/flop splicing in the SCN and other brain structures in Wistar rats. Our data show that the circadian rhythmicity in the SCN's GluA2 mRNA level was highest at dawn, while the circadian rhythm in R/G editing peaked at CT10 and the rhythmic flip varied with the acrophase at the late subjective night. The circadian rhythmicity was confirmed for R/G editing and splicing in the CA3 hippocampal area, and rhythmic variation of the flip isoform was also measured in the olfactory bulbs and cerebellum. The correlations between the R/G editing and alternative flip/flop splicing revealed a structure-dependent direction. In the hippocampus, the edited (G)-form level was positively correlated with the flip variant abundance, in accord with published data; by contrast, in the SCN, the flip variant was in associated more with the unedited (R) form. The edited (G) form and flop isoform also predominated in the retina and cerebellum.


Assuntos
Ritmo Circadiano/genética , Processamento Pós-Transcricional do RNA/genética , Receptores de AMPA/genética , Núcleo Supraquiasmático/metabolismo , Animais , Éxons/genética , Masculino , Edição de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores de AMPA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...